论文标题
较高堆栈上的六个功能正义主义
Six-Functor-Formalisms on Higher Stacks
论文作者
论文摘要
在本文中,显示出在某些自然区域条件下Toën-vezzosi定义的任何(经典)位点上的衍生物六函数形式的正式主义。作为一种应用,可以证明,在某些固定基础方案上,莫雷尔 - 沃德斯基 - ayoub的六函数形式延伸到较高(nisnevich-)Artin堆栈本地有限类型。
In this article, it is shown that derivator six-functor-formalisms on any (classical) site canonically extend to higher geometric stacks as defined by Toën-Vezzosi under some natural locality conditions. As an application, it is shown that the six-functor-formalisms of Morel-Voevodsky-Ayoub extend to higher (Nisnevich-)Artin stacks locally of finite type over some fixed base scheme.