论文标题
诱导的Stinespring分解和Wittstock支持定理
Induced Stinespring factorization and the Wittstock support theorem
论文作者
论文摘要
鉴于在相同的$ c^*$ - 代数上的一对完全限制的映射,请说$φ\ leqψ$如果$φ$的内核是$ψ$和$ψ$和$ψ\ circemcirccφ^{ - 1} $的子集的子集。地图$φ$的\ emph {agler class}是$ψ\geqφ的类。$此类地图允许填充公式,在lyapunov类型的情况下,在其巫婆脱发的stinespring系数上传递函数类型实现。作为一种应用,我们证明了极端Wittstock分解的支持是独一无二的。
Given a pair of self-adjoint-preserving completely bounded maps on the same $C^*$-algebra, say that $φ\leq ψ$ if the kernel of $φ$ is a subset of the kernel of $ψ$ and $ψ\circ φ^{-1}$ is completely positive. The \emph{Agler class} of a map $φ$ is the class of $ψ\geq φ.$ Such maps admit colligation formulae, and, in Lyapunov type situations, transfer function type realizations on the Stinespring coefficients of their Wittstock decompositions. As an application, we prove that the support of an extremal Wittstock decomposition is unique.