论文标题

进化程序员:自主创建基于进化算法的路径计划程序

Evolutionary Programmer: Autonomously Creating Path Planning Programs based on Evolutionary Algorithms

论文作者

Lou, Jiabin, Ding, Rong, Wu, Wenjun

论文摘要

进化算法在无人驾驶汽车路径计划方面的灵活性和有效性中大量使用。然而,它们对无法适应所有情况的环境的变化如此敏感。由于这个缺点,以前成功的计划者经常在新场景中失败。在本文中,提出了一种名为Evolutionary程序员的第一款机器学习方法来解决此问题。具体而言,最常用的进化算法分解为一系列运算符,这些操作员构成了系统的操作员库。新方法将操作员重组为集成的计划者,因此,可以选择最合适的操作员来适应不断变化的情况。与普通的机器程序员不同,此方法专注于具有高级集成指令的特定任务,从而减轻了指令短暂性引起的巨大搜索空间问题。在此基础上,提出了一个64位序列,以代表路径计划者,然后用改良的遗传算法演变。最后,最合适的计划者是通过利用上一个计划者和各种随机生成的信息来创建的。

Evolutionary algorithms are wildly used in unmanned aerial vehicle path planning for their flexibility and effectiveness. Nevertheless, they are so sensitive to the change of environment that can't adapt to all scenarios. Due to this drawback, the previously successful planner frequently fail in a new scene. In this paper, a first-of-its-kind machine learning method named Evolutionary Programmer is proposed to solve this problem. Concretely, the most commonly used Evolutionary Algorithms are decomposed into a series of operators, which constitute the operator library of the system. The new method recompose the operators to a integrated planner, thus, the most suitable operators can be selected for adapting to the changing circumstances. Different from normal machine programmers, this method focuses on a specific task with high-level integrated instructions and thus alleviate the problem of huge search space caused by the briefness of instructions. On this basis, a 64-bit sequence is presented to represent path planner and then evolved with the modified Genetic Algorithm. Finally, the most suitable planner is created by utilizing the information of the previous planner and various randomly generated ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源