论文标题
由于环形和幂律随机跳跃模型中频谱范围的波功能关键性而引起的超导性振幅增强
Enhanced Amplitude for Superconductivity due to Spectrum-wide Wave Function Criticality in Quasiperiodic and Power-law Random Hopping Models
论文作者
论文摘要
我们研究了一维Aubry-André和幂律随机循环基质模型,研究超导性的相互作用和广泛的(多重型)波函数(“ SWQC”的广泛(“范围范围的量子关键”,SWQC”),使用自我一致的BCS理论,具有有吸引力的相互作用。我们发现,SWQC在Anderson定位过渡中融合了有吸引力的相互作用,而在这两个模型中,配对幅度在此转变附近最大化。我们的结果表明,最近在二维拓扑表面状态和淋巴结超导体模型中发现的SWQC可以稳健地增强超导性。
We study the interplay of superconductivity and a wide spectrum of critical (multifractal) wave functions ("spectrum-wide quantum criticality," SWQC) in the one-dimensional Aubry-André and power-law random-banded matrix models with attractive interactions, using self-consistent BCS theory. We find that SWQC survives the incorporation of attractive interactions at the Anderson localization transition, while the pairing amplitude is maximized near this transition in both models. Our results suggest that SWQC, recently discovered in two-dimensional topological surface-state and nodal superconductor models, can robustly enhance superconductivity.