论文标题

在有限的腹腔镜控制下,基于3D感知的模仿学习在机器人手术中

3D Perception based Imitation Learning under Limited Demonstration for Laparoscope Control in Robotic Surgery

论文作者

Li, Bin, Wei, Ruofeng, Xu, Jiaqi, Lu, Bo, Yee, Chi-Hang, Ng, Chi-Fai, Heng, Pheng-Ann, Dou, Qi, Liu, Yun-Hui

论文摘要

自动腹腔镜运动控制对于外科医生有效执行手术至关重要。但是,其基于工具跟踪的传统控制方法而不考虑隐藏在外科手术场景中的信息不够智能,而最新的监督模仿学习(IL)方法(IL)的方法需要昂贵的传感器数据,并且由于有限的演示引起的分配不匹配问题而受苦。在本文中,我们提出了一个新颖的模仿学习框架,用于腹腔镜控制(ILLC),并通过增强学习(RL),可以从有限的手术视频剪辑中有效地学习控制策略。特别是,我们首先从未标记的视频中提取手术腹腔镜轨迹,作为演示并重建相应的手术场景。为了从有限的运动轨迹演示中充分学习,我们提出形状保留轨迹增强(SPTA)以增强这些数据,并建立一个模拟环境,该环境支持并行RGB-D渲染,以增强RL与环境相互作用的RL策略。通过对IL的对抗培训,我们根据产生的推出和手术示范获得腹腔镜控制政策。广泛的实验是在看不见的重建手术场景中进行的,我们的方法优于先前的IL方法,这证明了我们基于统一学习的腹腔镜控制框架的可行性。

Automatic laparoscope motion control is fundamentally important for surgeons to efficiently perform operations. However, its traditional control methods based on tool tracking without considering information hidden in surgical scenes are not intelligent enough, while the latest supervised imitation learning (IL)-based methods require expensive sensor data and suffer from distribution mismatch issues caused by limited demonstrations. In this paper, we propose a novel Imitation Learning framework for Laparoscope Control (ILLC) with reinforcement learning (RL), which can efficiently learn the control policy from limited surgical video clips. Specially, we first extract surgical laparoscope trajectories from unlabeled videos as the demonstrations and reconstruct the corresponding surgical scenes. To fully learn from limited motion trajectory demonstrations, we propose Shape Preserving Trajectory Augmentation (SPTA) to augment these data, and build a simulation environment that supports parallel RGB-D rendering to reinforce the RL policy for interacting with the environment efficiently. With adversarial training for IL, we obtain the laparoscope control policy based on the generated rollouts and surgical demonstrations. Extensive experiments are conducted in unseen reconstructed surgical scenes, and our method outperforms the previous IL methods, which proves the feasibility of our unified learning-based framework for laparoscope control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源