论文标题
MTI-NET:多目标语音可理解性预测模型
MTI-Net: A Multi-Target Speech Intelligibility Prediction Model
论文作者
论文摘要
最近,基于深度学习(DL)的非侵入性语音评估模型引起了极大的关注。许多研究报告说,这些基于DL的模型产生令人满意的评估性能和良好的灵活性,但是它们在看不见的环境中的性能仍然是一个挑战。此外,与质量分数相比,更少的研究详细介绍了深度学习模型以估计可理解性得分。这项研究提出了一个多任务语音可理解性预测模型,称为MTI-NET,用于预测人类和机器的可理解性指标。具体而言,鉴于语音话语,MTI-NET旨在预测人类的主观听力测试结果和单词错误率(WER)分数。我们还研究了几种可以改善MTI-NET预测性能的方法。首先,我们比较不同功能(包括自我监督学习(SSL)模型的低级特征和嵌入)和MTI-NET的预测目标。其次,我们探讨了转移学习和多任务学习对MTI-NET的影响。最后,我们研究了微调SSL嵌入的潜在优势。实验结果证明了使用跨域特征,多任务学习和微调SSL嵌入的有效性。此外,已经证实,MTI-NET预测的可理解性和WER得分与地面真相分数高度相关。
Recently, deep learning (DL)-based non-intrusive speech assessment models have attracted great attention. Many studies report that these DL-based models yield satisfactory assessment performance and good flexibility, but their performance in unseen environments remains a challenge. Furthermore, compared to quality scores, fewer studies elaborate deep learning models to estimate intelligibility scores. This study proposes a multi-task speech intelligibility prediction model, called MTI-Net, for simultaneously predicting human and machine intelligibility measures. Specifically, given a speech utterance, MTI-Net is designed to predict human subjective listening test results and word error rate (WER) scores. We also investigate several methods that can improve the prediction performance of MTI-Net. First, we compare different features (including low-level features and embeddings from self-supervised learning (SSL) models) and prediction targets of MTI-Net. Second, we explore the effect of transfer learning and multi-tasking learning on training MTI-Net. Finally, we examine the potential advantages of fine-tuning SSL embeddings. Experimental results demonstrate the effectiveness of using cross-domain features, multi-task learning, and fine-tuning SSL embeddings. Furthermore, it is confirmed that the intelligibility and WER scores predicted by MTI-Net are highly correlated with the ground-truth scores.