论文标题
使用变分和期望最大化方法对辐射转移模型的推断
Inference over radiative transfer models using variational and expectation maximization methods
论文作者
论文摘要
卫星的地球观测提供了以前所未有的精度监测我们星球的可能性。辐射转移模型(RTMS)编码通过大气的能量转移,用于对地球系统进行建模和理解,并估计通过反向建模从卫星观察中描述地球状态的参数。但是,对此类模拟器进行推断是一个具有挑战性的问题。 RTMS是非线性,非差异性和计算昂贵的代码,这增加了推理的难度。在本文中,我们介绍了两种计算技术,不仅推断生物物理参数的点估计值,还推断出它们的联合分布。其中之一是基于变异自动编码器方法,第二种方法基于蒙特卡洛期望最大化(MCEM)方案。我们比较和讨论每种方法的好处和缺点。我们还提供了合成模拟和真实Prosail模型的数值比较,真实的Prosail模型是一种流行的RTM,结合了土地植被叶和冠层建模。我们分析了两种方法的性能,用于建模和推断三个关键生物物理参数的分布,以量化陆地生物圈。
Earth observation from satellites offers the possibility to monitor our planet with unprecedented accuracy. Radiative transfer models (RTMs) encode the energy transfer through the atmosphere, and are used to model and understand the Earth system, as well as to estimate the parameters that describe the status of the Earth from satellite observations by inverse modeling. However, performing inference over such simulators is a challenging problem. RTMs are nonlinear, non-differentiable and computationally costly codes, which adds a high level of difficulty in inference. In this paper, we introduce two computational techniques to infer not only point estimates of biophysical parameters but also their joint distribution. One of them is based on a variational autoencoder approach and the second one is based on a Monte Carlo Expectation Maximization (MCEM) scheme. We compare and discuss benefits and drawbacks of each approach. We also provide numerical comparisons in synthetic simulations and the real PROSAIL model, a popular RTM that combines land vegetation leaf and canopy modeling. We analyze the performance of the two approaches for modeling and inferring the distribution of three key biophysical parameters for quantifying the terrestrial biosphere.