论文标题
具有适用于形态演化的有机半导体的相位场模型的预处理
Preconditioning for a Phase-Field Model with Application to Morphology Evolution in Organic Semiconductors
论文作者
论文摘要
cahn- hilliard方程是描述复杂形态演变的多功能模型。在本文中,我们提出了用于描述供体的纳米形态的三元相位模型的数值解的计算管道 - 受体光伏设备中使用的受体半导体混合物的纳米形态。该模型由两个使用有限元方法离散化的耦合的四阶部分微分方程。为了有效地解决所得的大规模线性系统,我们提出了一种基于鞍点系统的Schur-complement的有效近似的预处理策略。我们表明,这种方法在离散参数中的变化方面表现强大。最后,我们概述了计算的形态可用于计算有机太阳能电池中电荷,重组和运输的计算。
The Cahn--Hilliard equations are a versatile model for describing the evolution of complex morphologies. In this paper we present a computational pipeline for the numerical solution of a ternary phase-field model for describing the nanomorphology of donor--acceptor semiconductor blends used in organic photovoltaic devices. The model consists of two coupled fourth-order partial differential equations that are discretized using a finite element approach. In order to solve the resulting large-scale linear systems efficiently, we propose a preconditioning strategy that is based on efficient approximations of the Schur-complement of a saddle point system. We show that this approach performs robustly with respect to variations in the discretization parameters. Finally, we outline that the computed morphologies can be used for the computation of charge generation, recombination, and transport in organic solar cells.