论文标题
宽衬型IC超新星2014AD的紫外光谱和TARDIS模型
Ultraviolet Spectroscopy and TARDIS Models of the Broad-lined Type-Ic Supernova 2014ad
论文作者
论文摘要
很少有用于剥离的超新星的紫外线(UV)光谱,而迄今为止,没有覆盖型的IC Supernovae(SN IC-BL)的光谱。这些对象具有极高的射出速度,并且是与伽马射线爆发(GRB)直接相关的唯一一种超新星类型。在这里,我们介绍了SN IC-BL 2014AD的HST/STIS光谱的两个时代,这是该类别的第一个紫外线光谱。我们用26个新时代的基于地面光谱的新时代补充了这一点,从而增加了丰富的光谱时间序列。紫外线光谱没有显示出很强的特征,并且与紫外线观察到的其他SN IC光谱的宽广版本一致。我们测量FE II 5169埃脉冲速度,并表明SN 2014AD的射速速度甚至比大多数SNE IC都高,而GRB有和没有观察到的GRB。我们使用TARDIS构建SN 2014AD UV+光谱的模型,TARDIS是1D蒙特卡罗辐射转移光谱综合代码。这些模型在光学中很好地适应了多个时期的数据,但低估了紫外线中的通量,这可能是由于简化的假设所致。我们发现需要高速度的高密度来复制光谱,$ \ sim $ 3 m $ _ \ odot $以$ v> $ v> $ v> $ v> $ 22,000 km s $^{ - 1} $,假定是球形对称性的。我们的Nebular系列拟合表明在低速下的陡峭密度曲线。总之,这些结果意味着总的弹出质量比以前的光曲线分析和理论预期的要高。这可以通过低速下的密度曲线和射流中心附近的额外发射的平坦来解决。
Few published ultraviolet (UV) spectra exist for stripped-envelope supernovae, and none to date for broad-lined Type Ic supernovae (SN Ic-bl). These objects have extremely high ejecta velocities and are the only supernova type directly linked to gamma-ray bursts (GRBs). Here we present two epochs of HST/STIS spectra of the SN Ic-bl 2014ad, the first UV spectra for this class. We supplement this with 26 new epochs of ground-based optical spectra, augmenting a rich spectral time series. The UV spectra do not show strong features and are consistent with broadened versions of other SN Ic spectra observed in the UV. We measure Fe II 5169 Angstrom velocities and show that SN 2014ad has even higher ejecta velocities than most SNe Ic both with and without observed GRBs. We construct models of the SN 2014ad UV+optical spectra using TARDIS, a 1D Monte-Carlo radiative-transfer spectral synthesis code. The models fit the data well at multiple epochs in the optical but underestimate the flux in the UV, likely due to simplifying assumptions. We find that high densities at high velocities are needed to reproduce the spectra, with $\sim$3 M$_\odot$ of material at $v >$ 22,000 km s$^{-1}$, assuming spherical symmetry. Our nebular line fits suggest a steep density profile at low velocities. Together, these results imply a higher total ejecta mass than estimated from previous light curve analysis and expected from theory. This may be reconciled by a flattening of the density profile at low velocity and extra emission near the center of the ejecta.