论文标题
多维Lagrangian随机步行,质量转移粒子跟踪方案的平行域分解
Parallelized Domain Decomposition for Multi-Dimensional Lagrangian Random Walk, Mass-Transfer Particle Tracking Schemes
论文作者
论文摘要
我们开发了用于质量转移粒子跟踪(MTPT)方法的多维的,并行的域分解策略(DDC)。这些方法是一种用于模拟反应性传输的Lagrangian算法,并且可以通过使用大量CPU核心加速运行时间来平行。在这项工作中,我们研究了在两个和三个维度(2-D和3-D)中“平铺”域的不同程序,因为这种类型的正式DDC构造目前仅限于1-D。根据物理问题参数和可用CPU内核的数量,规定了最佳平铺,因为每个瓷砖都在精度和运行时间都提供了明显的结果。我们进一步将最有效的技术扩展到3-D进行比较,从而对维度对实施DDC方案的策略的影响进行了分析讨论。 DDC方法中增加计算资源(核心)会产生节点间通信和节点工作之间的权衡。对于最佳细分扩散问题,与串行相比,2D并行化算法达到了几乎完美的线性加速,将5小时的模拟降低到8秒,并且3-D算法将可观的速度保持在8秒钟。
We develop a multi-dimensional, parallelized domain decomposition strategy (DDC) for mass-transfer particle tracking (MTPT) methods. These methods are a type of Lagrangian algorithm for simulating reactive transport and are able to be parallelized by employing large numbers of CPU cores to accelerate run times. In this work, we investigate different procedures for "tiling" the domain in two and three dimensions, (2-d and 3-d), as this type of formal DDC construction is currently limited to 1-d. An optimal tiling is prescribed based on physical problem parameters and the number of available CPU cores, as each tiling provides distinct results in both accuracy and run time. We further extend the most efficient technique to 3-d for comparison, leading to an analytical discussion of the effect of dimensionality on strategies for implementing DDC schemes. Increasing computational resources (cores) within the DDC method produces a trade-off between inter-node communication and on-node work. For an optimally subdivided diffusion problem, the 2-d parallelized algorithm achieves nearly perfect linear speedup in comparison with the serial run up to around 2700 cores, reducing a 5-hour simulation to 8 seconds, and the 3-d algorithm maintains appreciable speedup up to 1700 cores.