论文标题

基于线性混合模型中拉索的统一有效推断

Uniformly Valid Inference Based on the Lasso in Linear Mixed Models

论文作者

Kramlinger, Peter, Schneider, Ulrike, Krivobokova, Tatyana

论文摘要

线性混合模型(LMM)适用于聚类数据,在生物识别技术,医学,调查统计和许多其他领域中很常见。在这些应用程序中,选择可用变量的子集后,必须进行有效的推断。我们为基于拉索型估计器的高斯LMM中的固定效应构建置信集。除了提供置信区外,这还允许量化该过程中变量选择和参数估计的关节不确定性。为了表明,固定效应的结果置信集在回归系数和协方差参数的参数空间上均匀有效,我们还证明了在限制的最大似然(REML)估计量的均匀cramer一致性的新型结果。在模拟中验证了构建的置信度与天真的选拔后程序的优势,并通过研究了美国湖泊的酸中和能力。

Linear mixed models (LMMs) are suitable for clustered data and are common in biometrics, medicine, survey statistics and many other fields. In those applications, it is essential to carry out valid inference after selecting a subset of the available variables. We construct confidence sets for the fixed effects in Gaussian LMMs that are based on Lasso-type estimators. Aside from providing confidence regions, this also allows to quantify the joint uncertainty of both variable selection and parameter estimation in the procedure. To show that the resulting confidence sets for the fixed effects are uniformly valid over the parameter spaces of both the regression coefficients and the covariance parameters, we also prove the novel result on uniform Cramer consistency of the restricted maximum likelihood (REML) estimators of the covariance parameters. The superiority of the constructed confidence sets to naive post-selection procedures is validated in simulations and illustrated with a study of the acid neutralization capacity of lakes in the United States.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源