论文标题
KCD:知识步行和文本提示在新闻媒体中增强了政治观点的检测
KCD: Knowledge Walks and Textual Cues Enhanced Political Perspective Detection in News Media
论文作者
论文摘要
政治观点检测已成为越来越重要的任务,可以帮助战斗回声室和政治两极分化。以前的方法通常着重于利用文本内容来识别立场,而他们无法通过背景知识推理或利用新闻文章中丰富的语义和句法文本标签。鉴于这些局限性,我们提出了KCD,这是一种政治观点检测方法,以实现多跳知识推理,并将文本提示作为段落级标签纳入。具体来说,我们首先在外部知识图上随机步行,并将其注入新闻文本表示形式。然后,我们构建了一个异构信息网络,以共同建模新闻内容以及新闻文章中的语义,句法和实体提示。最后,我们采用关系图神经网络来进行图形表示学习,并进行政治观点检测。广泛的实验表明,我们的方法在两个基准数据集上的表现优于最先进的方法。我们进一步研究了知识步行和文本提示的效果,以及它们如何促进我们方法的数据效率。
Political perspective detection has become an increasingly important task that can help combat echo chambers and political polarization. Previous approaches generally focus on leveraging textual content to identify stances, while they fail to reason with background knowledge or leverage the rich semantic and syntactic textual labels in news articles. In light of these limitations, we propose KCD, a political perspective detection approach to enable multi-hop knowledge reasoning and incorporate textual cues as paragraph-level labels. Specifically, we firstly generate random walks on external knowledge graphs and infuse them with news text representations. We then construct a heterogeneous information network to jointly model news content as well as semantic, syntactic and entity cues in news articles. Finally, we adopt relational graph neural networks for graph-level representation learning and conduct political perspective detection. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods on two benchmark datasets. We further examine the effect of knowledge walks and textual cues and how they contribute to our approach's data efficiency.