论文标题

最佳的个性化决策规则的转换不变,并带有事件的结果

Transformation-Invariant Learning of Optimal Individualized Decision Rules with Time-to-Event Outcomes

论文作者

Zhou, Yu, Wang, Lan, Song, Rui, Zhao, Tuoyi

论文摘要

在精确医学的许多重要应用中,感兴趣的结果是发生事件的时间(例如死亡,疾病复发),主要目标是确定最佳的个性化决策规则(IDR)以延长生存时间。该领域的现有工作主要集中在估计最佳IDR上,以最大化我们提出了一个新的强大框架,用于估算最佳的静态或动态IDR,并基于易于间隔的分数标准,并使用时间为事实的结果。新方法不需要指定结果回归模型,并且对于重尾分布是可靠的。估计问题对应于有限和无限维滋扰参数的不规则M估计问题。采用先进的经验过程技术,我们建立了估计参数索引最佳IDR的统计理论。此外,我们证明了一个新的结果,即即使最佳IDR是非唯一的,在轻度条件下,提出的方法也可以始终如一地估计最佳价值函数,这发生在挑战性的特殊定律的挑战性环境中。我们还提出了一个平滑的重采样程序以进行推理。所提出的方法是在R包QTOCEN中实现的。我们通过广泛的蒙特卡洛研究和实际数据应用来证明提出的新方法的性能。人口中的限制性平均生存时间。

In many important applications of precision medicine, the outcome of interest is time to an event (e.g., death, relapse of disease) and the primary goal is to identify the optimal individualized decision rule (IDR) to prolong survival time. Existing work in this area have been mostly focused on estimating the optimal IDR to maximize the We propose a new robust framework for estimating an optimal static or dynamic IDR with time-to-event outcomes based on an easy-to-interpret quantile criterion. The new method does not need to specify an outcome regression model and is robust for heavy-tailed distribution. The estimation problem corresponds to a nonregular M-estimation problem with both finite and infinite-dimensional nuisance parameters. Employing advanced empirical process techniques, we establish the statistical theory of the estimated parameter indexing the optimal IDR. Furthermore, we prove a novel result that the proposed approach can consistently estimate the optimal value function under mild conditions even when the optimal IDR is non-unique, which happens in the challenging setting of exceptional laws. We also propose a smoothed resampling procedure for inference. The proposed methods are implemented in the R-package QTOCen. We demonstrate the performance of the proposed new methods via extensive Monte Carlo studies and a real data application.restricted mean survival time in the population.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源