论文标题
在改善深泡检测器的跨数据集概括方面
On Improving Cross-dataset Generalization of Deepfake Detectors
论文作者
论文摘要
深层假货的面部操纵引起了严重的安全风险,并引起了严重的社会问题。作为对策,最近已经提出了许多深层假检测方法。他们中的大多数使用主链卷积神经网络(CNN)架构进行了验证的二进制分类问题,将伪造的检测模型为二进制分类问题。这些基于CNN的方法表明,在曲线下(AUC)下方的区域(AUC)的深度伪造检测中,这些方法非常高至0.99。但是,当数据集评估时,这些方法的性能会大大降低。在本文中,我们将深层的伪造探测作为监督和增强学习(RL)的混合组合,以提高其跨数据集泛化的性能。提出的方法以特定于图像的方式选择了RL代理为每个测试样品的TOP-K增强。使用CNN获得的每个测试图像的所有增强量获得的分类得分平均在一起,以进行最终的真实或虚假分类。通过广泛的实验验证,我们证明了我们的方法比现有的已发表研究的研究优越,从而获得了深层伪造探测器的跨数据集概括,从而获得了最新的性能。
Facial manipulation by deep fake has caused major security risks and raised severe societal concerns. As a countermeasure, a number of deep fake detection methods have been proposed recently. Most of them model deep fake detection as a binary classification problem using a backbone convolutional neural network (CNN) architecture pretrained for the task. These CNN-based methods have demonstrated very high efficacy in deep fake detection with the Area under the Curve (AUC) as high as 0.99. However, the performance of these methods degrades significantly when evaluated across datasets. In this paper, we formulate deep fake detection as a hybrid combination of supervised and reinforcement learning (RL) to improve its cross-dataset generalization performance. The proposed method chooses the top-k augmentations for each test sample by an RL agent in an image-specific manner. The classification scores, obtained using CNN, of all the augmentations of each test image are averaged together for final real or fake classification. Through extensive experimental validation, we demonstrate the superiority of our method over existing published research in cross-dataset generalization of deep fake detectors, thus obtaining state-of-the-art performance.