论文标题
广义SU(2)Proca理论的脱钩限制一致性
Decoupling-limit consistency of the generalized SU(2) Proca theory
论文作者
论文摘要
我们研究广义SU(2)Proca理论(GSU2P)的去耦极限的一致性。也就是说,我们研究了这些术语的健康性,这些术语的分析最初不是在整个理论重建中建立的(请参阅Gallego Cadavid等人的工作,[Phys。V.D 102,104066(2020)])。这些术语是均衡 - $ \ tilde {\ Mathcal {l}} _ {4,2}^1 $,而均等范围超过su(2)使用3+1 Arnowitt-Deser-Misner形式主义,我们以脱钩极限写下这些术语的动力学Lagrangian,并表明它们相应的动力学矩阵是退化的。这种退化是基本约束构造关系所要求的正确数量自由度的必要条件。有趣的是,$ \ tilde {\ Mathcal {l}} _ {4,2}^1 $ term纯粹是非亚伯利亚语,对理论的动力学Lagrangian并不贡献,因此其贡献是微不足道的。同样,但在这些情况下,$ \ Mathcal {l} _ {4,2}^3 $和$ \ Mathcal {l} _ {4,2}^4 $项对动力学Lagrangian的术语也很偏变。本文介绍的结果代表了完全健康的GSU2P的构建进展。
We study the consistency of the decoupling limit of the generalized SU(2) Proca theory (GSU2P). Namely, we study the healthiness of those terms whose analysis in the scalar limit was not originally established in the reconstruction of the full theory (see the work by Gallego Cadavid et. al. [Phys. Rev. D 102, 104066 (2020)]). Those terms are the parity-violating $\tilde{\mathcal{L}}_{4,2}^1$ and the parity-conserving beyond SU(2) Proca terms $\mathcal{L}_{4,2}^3$ and $\mathcal{L}_{4,2}^4$. Using the 3+1 Arnowitt-Deser-Misner formalism, we write down the kinetic Lagrangian of these terms in the decoupling limit and show that their corresponding kinetic matrices are degenerate. This degeneracy is a necessary condition for the propagation of the right number of degrees of freedom, as required by the primary constraint-enforcing relation. Interestingly, the $\tilde{\mathcal{L}}_{4,2}^1$ term, which is purely non-Abelian, does not contribute to the kinetic Lagrangian of the theory, so its contribution is trivially degenerate. Similarly, but not trivially in these cases, the contributions of the $\mathcal{L}_{4,2}^3$ and $\mathcal{L}_{4,2}^4$ terms to the kinetic Lagrangian turn out to be degenerate as well. The results presented in this paper represent progress in the construction of the fully healthy GSU2P.