论文标题

量化感知训练中的渠道修剪:一种自适应投影梯度下降切解方法

Channel Pruning In Quantization-aware Training: An Adaptive Projection-gradient Descent-shrinkage-splitting Method

论文作者

Li, Zhijian, Xin, Jack

论文摘要

我们提出了一种自适应投影梯度下降切解方法(APGDSSSM),以将基于惩罚的渠道修剪整合到量化感知训练(QAT)中。 APGDSSM同时搜索量化子空间和稀疏子空间中的权重。 APGDSSM使用收缩操作员和一种分裂技术来产生稀疏的重量,以及组的套索惩罚,以将重量稀疏推向通道稀疏。此外,我们提出了一种新颖的互补转换的L1惩罚,以稳定训练以进行极端压缩。

We propose an adaptive projection-gradient descent-shrinkage-splitting method (APGDSSM) to integrate penalty based channel pruning into quantization-aware training (QAT). APGDSSM concurrently searches weights in both the quantized subspace and the sparse subspace. APGDSSM uses shrinkage operator and a splitting technique to create sparse weights, as well as the Group Lasso penalty to push the weight sparsity into channel sparsity. In addition, we propose a novel complementary transformed l1 penalty to stabilize the training for extreme compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源