论文标题
无质量矢量场的重力崩溃,宇宙常数为正
Gravitational Collapse of Massless Vector Field with Positive Cosmological Constant
论文作者
论文摘要
我们研究了在正宇宙常数$λ$的情况下,无质量矢量场的均匀重力崩溃的动力学。为无数矢量字段获得的相应密度函数$ρ(a)$与比例因子因子$ a(t)$的第四功率成反比。比例因子的变化表明,在$ 0 \,\leλ<1 $的情况下,我们获得了矢量场的引力崩溃,以{\ it有限}的合并时间,导致{\ it blackhole}的合并时间,因此随着$λ$的增加,增加了$λ$,增加了singularity形成时间,$ t_s $ t_s $增加。对于$λ= 1 $,我们获得了$ a(t)= 0 $,因此限制了$λ$(W.R.T的最大值$ρ_0$),该系统可能会在重力下崩溃。
We investigate the dynamics of homogeneous gravitational collapse of a massless vector field in the presence of a positive cosmological constant $Λ$. The corresponding density function $ρ(a)$ obtained for the massless vector field is inversely proportional to the fourth power of the scale factor $a (t)$. The variation of the scale factor shows that for $0\, \leΛ< 1$, we obtain the gravitational collapse of the vector fields leading singularity formation in a {\it finite} comoving time resulting in a {\it Blackhole} such that with increasing $Λ$, the singularity formation time, $t_s$ increases. For $Λ= 1$, we obtain $a(t) = 0$, thus limiting the maximum value of $Λ$, (w.r.t the initial density $ρ_0$) for which the system could collapse under gravity.