论文标题
使用快速探索的信念空间图,在离散的部分可观察到的环境中优化路径树
Path-Tree Optimization in Discrete Partially Observable Environments using Rapidly-Exploring Belief-Space Graphs
论文作者
论文摘要
机器人通常需要解决路径规划问题,在某些环境的基本和离散方面部分可以观察到。这引入了多模式,机器人必须能够观察并推断其环境状态。为了解决这个问题,我们介绍了计划在信仰空间中的路径树的途径优化(PTO)算法。路径树是一种类似树状的运动,具有分支点,在该点上,机器人会收到一个观察结果,从而导致信念状态更新。机器人根据所收到的观察结果采取不同的分支。该算法有三个主要步骤。首先,在状态空间上迅速探索随机图(RRG)。其次,通过查询观察模型,将RRG扩展到信仰空间图。在第三步中,在信念空间图上执行动态编程以提取路径树。由此产生的路径将探索与剥削相结合,即它平衡了获得有关环境知识的需求,并需要达到目标。我们演示了导航和移动操作任务上的算法功能,并在最佳和运行时使用任务和运动计划方法(TAMP)表现出比基线的优势。
Robots often need to solve path planning problems where essential and discrete aspects of the environment are partially observable. This introduces a multi-modality, where the robot must be able to observe and infer the state of its environment. To tackle this problem, we introduce the Path-Tree Optimization (PTO) algorithm which plans a path-tree in belief-space. A path-tree is a tree-like motion with branching points where the robot receives an observation leading to a belief-state update. The robot takes different branches depending on the observation received. The algorithm has three main steps. First, a rapidly-exploring random graph (RRG) on the state space is grown. Second, the RRG is expanded to a belief-space graph by querying the observation model. In a third step, dynamic programming is performed on the belief-space graph to extract a path-tree. The resulting path-tree combines exploration with exploitation i.e. it balances the need for gaining knowledge about the environment with the need for reaching the goal. We demonstrate the algorithm capabilities on navigation and mobile manipulation tasks, and show its advantage over a baseline using a task and motion planning approach (TAMP) both in terms of optimality and runtime.