论文标题

Michael Selections和Cadlag功能的铸币表示形式

Michael selections and Castaing representations with cadlag functions

论文作者

Perkkiö, Ari-Pekka, Treviño-Aguilar, Erick

论文摘要

迈克尔的选择定理意味着,当且仅当映射以映射的图像闭合时,封闭的凸出非空价映射从Sorgenfrey线到欧几里得空间是内在的,只有在映射的图像闭合。本文提供了必要和充分的条件,以使表示cadlag选择的表示,即,对于正确连续且具有左限制的选择。表征是由CADLAG过程中的连续时间随机优化问题激励的。在这里,给出了CADLAG函数积分函数的应用。

Michael's selection theorem implies that a closed convex nonempty-valued mapping from the Sorgenfrey line to a euclidean space is inner semicontinuous if and only if the mapping can be represented as the image closure of right-continuous selections of the mapping. This article gives necessary and sufficient conditions for the representation to hold for cadlag selections, i.e., for selections that are right-continuous and have left limits. The characterization is motivated by continuous time stochastic optimization problems over cadlag processes. Here, an application to integral functionals of cadlag functions is given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源