论文标题

磁盘:数学单词问题生成的域约束实例草图

DISK: Domain-constrained Instance Sketch for Math Word Problem Generation

论文作者

Cao, Tianyang, Zeng, Shuang, Xu, Xiaodan, Mansur, Mairgup, Chang, Baobao

论文摘要

数学单词问题(MWP)是一个连贯的叙述,它反映了数学方程的基本逻辑。成功的MWP生成可以自动化数学问题的写作。先前的方法主要基于不灵活的预定义模板生成MWP文本。在本文中,我们提出了一种神经模型,用于从数学方程生成MWP文本。首先,我们合并了一个以域知识为条件的匹配模型,以检索与地面真相最一致的MWP实例,该实例是域是用域摘要提取的潜在变量。其次,通过从检索到的MWP实例中构造数量单元格(QCG)并在其上进行推理,我们可以提高模型对现实世界场景的理解,并得出一个域受限的实例草图来指导生成。此外,QCG还与方程式编码器进行交互,以增强数学令牌(例如数量和变量)和MWP文本之间的比对。对教育MWP集的实验和实证分析表明,我们的模型在自动评估指标和人类评估指标中都取得了令人印象深刻的表现。

A math word problem (MWP) is a coherent narrative which reflects the underlying logic of math equations. Successful MWP generation can automate the writing of mathematics questions. Previous methods mainly generate MWP text based on inflexible pre-defined templates. In this paper, we propose a neural model for generating MWP text from math equations. Firstly, we incorporate a matching model conditioned on the domain knowledge to retrieve a MWP instance which is most consistent with the ground-truth, where the domain is a latent variable extracted with a domain summarizer. Secondly, by constructing a Quantity Cell Graph (QCG) from the retrieved MWP instance and reasoning over it, we improve the model's comprehension of real-world scenarios and derive a domain-constrained instance sketch to guide the generation. Besides, the QCG also interacts with the equation encoder to enhance the alignment between math tokens (e.g., quantities and variables) and MWP text. Experiments and empirical analysis on educational MWP set show that our model achieves impressive performance in both automatic evaluation metrics and human evaluation metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源