论文标题

用于农业图像增强的生成对抗网络:系统评价

Generative Adversarial Networks for Image Augmentation in Agriculture: A Systematic Review

论文作者

Olaniyi, Ebenezer, Chen, Dong, Lu, Yuzhen, Huang, Yanbo

论文摘要

在农业图像分析中,在存在生物学变异性和非结构化环境的挑战的情况下,最佳的模型性能敏锐地追求了更好地实现视觉识别任务(例如,图像分类,细分,对象检测和本地化)。但是,通常很难获得大规模,平衡和接地的图像数据集,以助长高级高性能模型的发展。随着通过深度学习的人工智能影响农业图像的分析和建模,数据增强在促进模型性能的同时通过算法扩展培训数据集来促进模型的性能,同时减少手动效果进行数据准备工作。除传统数据增强技术外,2014年在计算机视觉社区发明的生成对抗网络(GAN)提供了一套新颖的方法,可以学习良好的数据表示并生成高度逼真的样本。自2017年以来,对甘恩斯的研究进行了增长,以增加农业中的图像增强或合成,以改善模型绩效。本文概述了gan体系结构的演变,然后对其在农业中的应用进行系统的审查(https://github.com/derekabc/gans-agriculture),涉及各种植物健康,杂草,杂草,水果,水果养殖,动物农场,动物农场,植物现场现场的视觉任务,以及postharvest andtharvest and frutection defaction defection defection。讨论了gan的挑战和机遇,以进行未来的研究。

In agricultural image analysis, optimal model performance is keenly pursued for better fulfilling visual recognition tasks (e.g., image classification, segmentation, object detection and localization), in the presence of challenges with biological variability and unstructured environments. Large-scale, balanced and ground-truthed image datasets, however, are often difficult to obtain to fuel the development of advanced, high-performance models. As artificial intelligence through deep learning is impacting analysis and modeling of agricultural images, data augmentation plays a crucial role in boosting model performance while reducing manual efforts for data preparation, by algorithmically expanding training datasets. Beyond traditional data augmentation techniques, generative adversarial network (GAN) invented in 2014 in the computer vision community, provides a suite of novel approaches that can learn good data representations and generate highly realistic samples. Since 2017, there has been a growth of research into GANs for image augmentation or synthesis in agriculture for improved model performance. This paper presents an overview of the evolution of GAN architectures followed by a systematic review of their application to agriculture (https://github.com/Derekabc/GANs-Agriculture), involving various vision tasks for plant health, weeds, fruits, aquaculture, animal farming, plant phenotyping as well as postharvest detection of fruit defects. Challenges and opportunities of GANs are discussed for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源