论文标题
双提示:互补提示无彩排的持续学习
DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning
论文作者
论文摘要
持续学习旨在使单个模型能够学习一系列任务,而不会造成灾难性的遗忘。表现最好的方法通常需要排练缓冲区来存储过去的原始示例以进行经验重播,但是,由于隐私和内存约束,这会限制其实际价值。在这项工作中,我们提出了一个简单而有效的框架,即DualPrompt,该框架学习了一组称为提示的参数,以正确地指示预先训练的模型,以依次学习到到达而不对过去的示例进行缓冲的情况下。 DualPrompt提出了一种新颖的方法,可以将互补提示附加到预训练的主链上,然后将目标作为学习任务不变和特定于任务的“指令”。通过广泛的实验验证,双启示始终在具有挑战性的集体设置下始终设置最先进的表现。尤其是,双启示的表现优于最近的高级持续学习方法,缓冲尺寸相对较大。我们还引入了一个更具挑战性的基准Split Imagenet-R,以帮助推广无彩排的持续学习研究。源代码可在https://github.com/google-research/l2p上找到。
Continual learning aims to enable a single model to learn a sequence of tasks without catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store past pristine examples for experience replay, which, however, limits their practical value due to privacy and memory constraints. In this work, we present a simple yet effective framework, DualPrompt, which learns a tiny set of parameters, called prompts, to properly instruct a pre-trained model to learn tasks arriving sequentially without buffering past examples. DualPrompt presents a novel approach to attach complementary prompts to the pre-trained backbone, and then formulates the objective as learning task-invariant and task-specific "instructions". With extensive experimental validation, DualPrompt consistently sets state-of-the-art performance under the challenging class-incremental setting. In particular, DualPrompt outperforms recent advanced continual learning methods with relatively large buffer sizes. We also introduce a more challenging benchmark, Split ImageNet-R, to help generalize rehearsal-free continual learning research. Source code is available at https://github.com/google-research/l2p.