论文标题
大量:星系的物理多波段结构分解和质量年龄平面
ProFuse: Physical Multi-Band Structural Decomposition of Galaxies and the Mass-Size-Age Plane
论文作者
论文摘要
我们提出了新的大量R包,这是一种同时的光谱(与远红外的紫外线)和空间结构分解工具,可生成星系及其组件的物理模型。这结合了最近发布的深刻(用于自动源提取),利润(用于扩展源分析)和前景(用于出色的人口建模)软件包的功能。大量新颖的新颖性是,它使用自洽模型生成图像,以分别为恒星形成和金属性历史记录分别生成图像,并在一系列波长范围内使用目标图像来定义模型的可能性并优化我们的物理星系重建。本文的第一部分详细探讨了大量的方法,并将结果与已发表的结构和出色的种群特性进行了比较。该论文的后半部分大量适用于6,664 Z <0.06 GAMA星系。使用重新处理的UgrizyJhks成像,我们将结构和恒星种群特性提取凸起和磁盘并联。除了产生真正的恒星质量质量关系,我们还进一步扩展了这种相关性,以探索年龄和气相金属性的第三维。磁盘尤其表现出在明确的平面中的质量大小之间的强大共依赖性,在给定的磁盘恒星质量较年轻的磁盘往往更大。这些发现与更高的红移的工作非常吻合,表明先前形成的磁盘在物理上较小。
We present the new ProFuse R package, a simultaneous spectral (ultraviolet to far infrared) and spatial structural decomposition tool that produces physical models of galaxies and their components. This combines the functionality of the recently released ProFound (for automatic source extraction), ProFit (for extended source profiling) and ProSpect (for stellar population modelling) software packages. The key novelty of ProFuse is that it generates images using a self-consistent model for the star formation and metallicity history of the bulge and disk separately, and uses target images across a range of wavelengths to define the model likelihood and optimise our physical galaxy reconstruction. The first part of the paper explores the ProFuse approach in detail, and compares results to published structural and stellar population properties. The latter part of the paper applies ProFuse to 6,664 z < 0.06 GAMA galaxies. Using re-processed ugriZYJHKs imaging we extract structural and stellar population properties for bulges and disks in parallel. As well as producing true stellar mass based mass-size relationships, we further extend this correlation to explore the third dimensions of age and gas phase metallicity. The disks in particular demonstrate strong co-dependency between mass-size-age in a well defined plane, where at a given disk stellar mass younger disks tend to be larger. These findings are in broad agreement with work at higher redshift suggesting disks that formed earlier are physically smaller.