论文标题
手性异常的异常自发发射动力学
Anomalous spontaneous emission dynamics at chiral exceptional points
论文作者
论文摘要
一个开放的量子系统在频谱奇点上运行,其中尺寸降低(称为特殊点(EPS))表明行为与遗传学对应物的区分。在这里,我们介绍了具有手性EPS的微博的局部密度(LDOS)的分析描述,并从量子发射器(QE)的异常自发发射动力学揭示了由于EPS的非Lorentzian响应而引起的。具体而言,我们揭示了手性EPS贡献的正方形Lorentzian LDOS术语可以破坏性地干扰线性Lorentzian轮廓,从而导致QE的无效purcell增强量具有特殊过渡频率,我们称之为{\ IT {\ IT {ep ep toss诱导的透明度}}。尽管对于建设性干扰的情况,洛伦兹方术语甚至可以在裸露的组件下方缩小拉比分裂的线宽,从而显着抑制了拉比振荡的衰减。有趣的是,我们进一步发现,具有手性EPS的开放微腔支持原子 - 光子结合的状态,用于长期动态中的种群捕获和衰减抑制。作为应用,我们证明了在手性EPS上运行的微腔的优势,可以实现高保真纠缠产生和高效的单光子产生。我们的作品揭示了手性EPS独有的异国腔量子电动力学,该动力学为通过非热度打开了在量子水平上控制光 - 物质相互作用的大门,并具有巨大的潜力,可以构建高性能量子量化设备。
An open quantum system operated at the spectral singularities where dimensionality reduces, known as exceptional points (EPs), demonstrates distinguishing behavior from the Hermitian counterpart. Here, we present an analytical description of local density of states (LDOS) for microcavity featuring chiral EPs, and unveil the anomalous spontaneous emission dynamics from a quantum emitter (QE) due to the non-Lorentzian response of EPs. Specifically, we reveal that a square Lorentzian term of LDOS contributed by chiral EPs can destructively interfere with the linear Lorentzian profile, resulting in the null Purcell enhancement to a QE with special transition frequency, which we call {\it{EP induced transparency}}. While for the case of constructive interference, the square Lorentzian term can narrow the linewidth of Rabi splitting even below that of bare components, and thus significantly suppresses the decay of Rabi oscillation. Interestingly, we further find that an open microcavity with chiral EPs supports atom-photon bound states for population trapping and decay suppression in long-time dynamics. As applications, we demonstrate the advantages of microcavity operated at chiral EPs in achieving high-fidelity entanglement generation and high-efficiency single-photon generation. Our work unveils the exotic cavity quantum electrodynamics unique to chiral EPs, which opens the door for controlling light-matter interaction at the quantum level through non-Hermiticity, and holds great potential in building high-performance quantum-optics devices.