论文标题

HAKG:层次结构知识的知识网络网络推荐

HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation

论文作者

Du, Yuntao, Zhu, Xinjun, Chen, Lu, Zheng, Baihua, Gao, Yunjun

论文摘要

知识图(KG)在提高建议性能和解释性方面起着越来越重要的作用。最近的技术趋势是根据信息传播方案设计端到端模型。但是,现有的基于传播的方法无法(1)建模基础层次结构和关系,以及(2)捕获用于学习高质量用户和项目表示的项目的高阶协作信号。 在本文中,我们提出了一个新模型,称为层次结构知识门控网络(HAKG),以解决上述问题。从技术上讲,我们对用户和项目(由用户信息图捕获)以及在双曲线空间中捕获的实体和关系(以kg捕获)进行建模,并设计一种双曲线聚合方案,以收集kg的关系上下文。同时,我们引入了一种新型的角度约束,以保留嵌入空间中项目的特征。此外,我们提出了一个双重嵌入式设计,以分别表示和传播协作信号和知识协会,并利用封闭式的聚合来提取歧视性信息,以更好地捕获用户行为模式。三个基准数据集的实验结果表明,HAKG比CKAN,Hyper-Know和Kgin等最先进的方法取得了显着改善。对学习的双曲线嵌入的进一步分析证实,HAKG对数据层次结构提供了有意义的见解。

Knowledge graph (KG) plays an increasingly important role to improve the recommendation performance and interpretability. A recent technical trend is to design end-to-end models based on information propagation schemes. However, existing propagation-based methods fail to (1) model the underlying hierarchical structures and relations, and (2) capture the high-order collaborative signals of items for learning high-quality user and item representations. In this paper, we propose a new model, called Hierarchy-Aware Knowledge Gated Network (HAKG), to tackle the aforementioned problems. Technically, we model users and items (that are captured by a user-item graph), as well as entities and relations (that are captured in a KG) in hyperbolic space, and design a hyperbolic aggregation scheme to gather relational contexts over KG. Meanwhile, we introduce a novel angle constraint to preserve characteristics of items in the embedding space. Furthermore, we propose a dual item embeddings design to represent and propagate collaborative signals and knowledge associations separately, and leverage the gated aggregation to distill discriminative information for better capturing user behavior patterns. Experimental results on three benchmark datasets show that, HAKG achieves significant improvement over the state-of-the-art methods like CKAN, Hyper-Know, and KGIN. Further analyses on the learned hyperbolic embeddings confirm that HAKG offers meaningful insights into the hierarchies of data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源