论文标题

双线性形式的界限与Kloosterman总和

Bounds on bilinear forms with Kloosterman sums

论文作者

Kerr, Bryce, Shparlinski, Igor E., Wu, Xiaosheng, Xi, Ping

论文摘要

我们通过Kloosterman总和证明了双线性形式的新界限,从而补充并改善了一系列结果。 Fouvry,E。Kowalski和Ph.Michel(2014),V。Blomer,é。 Fouvry,E。Kowalski,Ph。Michel和D.Milićević(2017),E。Kowalski,Ph。Michel和W. Sawin(2019,2020)和I. E. E. Shparlinski(2019)。这些改进依赖于II型双线性形式的新估计值,并具有不完整的Kloosterman总和。我们还通过在质数字段上引入来自添加剂组合物的技术来为双线性形式建立一个新的估计值,其中一个变量是一个变量。其中一些范围在WU(2020)最近在渐近公式的工作中发现了至关重要的应用,该公式是Dirichlet $ l $ functions的第四瞬间。作为新的应用,还给出了对Kloosterman总和较高时刻的估计值,以及在算术进程家族中除数函数的分布。

We prove new bounds on bilinear forms with Kloosterman sums, complementing and improving a series of results by É. Fouvry, E. Kowalski and Ph. Michel (2014), V. Blomer, É. Fouvry, E. Kowalski, Ph. Michel and D. Milićević (2017), E. Kowalski, Ph. Michel and W. Sawin (2019, 2020) and I. E. Shparlinski (2019). These improvements rely on new estimates for Type II bilinear forms with incomplete Kloosterman sums. We also establish new estimates for bilinear forms with one variable from an arbitrary set by introducing techniques from additive combinatorics over prime fields. Some of these bounds have found a crucial application in the recent work of Wu (2020) on asymptotic formulas for the fourth moments of Dirichlet $L$-functions. As new applications, an estimate for higher moments of averages of Kloosterman sums and the distribution of divisor function in a family of arithmetic progressions are also given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源