论文标题

整体大脑连通性映射的多编码整合方法的比较调查

Comparative Survey of Multigraph Integration Methods for Holistic Brain Connectivity Mapping

论文作者

Chaari, Nada, Akdag, Hatice Camgoz, Rekik, Islem

论文摘要

网络神经科学中最大的科学挑战之一是创建代表性的脑网络人群的代表性地图,该地图充当连接指纹。连接大脑模板(CBT)也名为网络地图集,它提供了一种强大的工具,用于捕获给定种群的最具代表性和歧视性特征,同时保留其拓扑模式。 CBT的想法是将异质性大脑连通性网络的种群整合起来,这些网络源自不同的神经成像模式或大脑视图(例如结构和功能),并将其纳入统一的整体表示。在这里,我们回顾了当前的最新方法,旨在估计单视图和多视图脑网络人群中以良好为中心和代表性的CBT。我们首先要回顾每种CBT学习方法,然后根据以下标准分别介绍评估措施,以比较由单视图和多机集成方法产生的人群的CBT代表性,并分别基于以下标准:中心性,生物标记者可重现性,节点级别,节点级别相似性​​,全球级别相似性​​,基于距离和距离的相似性和距离相似性。我们证明,深图标准器(DGN)方法显着优于其他多图和所有单视图集成方法,用于使用各种健康和无序数据集估算CBT,在中心度,可重复性方面(即,典型的生物标志物可重复可重复可重复可重复可重复使用典型的典型的本地范围,并均与典型的典型性变异性,以及预期性的可变性,以及保留的连接性效应,以及保留的效率),以及保留的典型性),以及保留的典型性效率,以及保留的典型性),以及保留典型的连接性效应,以及保留典型的生物标志性效率,以及典型的典型性可变性。图形级别。

One of the greatest scientific challenges in network neuroscience is to create a representative map of a population of heterogeneous brain networks, which acts as a connectional fingerprint. The connectional brain template (CBT), also named network atlas, presents a powerful tool for capturing the most representative and discriminative traits of a given population while preserving its topological patterns. The idea of a CBT is to integrate a population of heterogeneous brain connectivity networks, derived from different neuroimaging modalities or brain views (e.g., structural and functional), into a unified holistic representation. Here we review current state-of-the-art methods designed to estimate well-centered and representative CBT for populations of single-view and multi-view brain networks. We start by reviewing each CBT learning method, then we introduce the evaluation measures to compare CBT representativeness of populations generated by single-view and multigraph integration methods, separately, based on the following criteria: centeredness, biomarker-reproducibility, node-level similarity, global-level similarity, and distance-based similarity. We demonstrate that the deep graph normalizer (DGN) method significantly outperforms other multi-graph and all single-view integration methods for estimating CBTs using a variety of healthy and disordered datasets in terms of centeredness, reproducibility (i.e., graph-derived biomarkers reproducibility that disentangle the typical from the atypical connectivity variability), and preserving the topological traits at both local and global graph-levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源