论文标题
ESCM $^2 $:整个空间反事实多任务模型,用于点击转换率估算
ESCM$^2$: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation
论文作者
论文摘要
精确估计点击转换率对于建筑推荐系统至关重要,这长期以来一直面临样本选择偏差和数据稀疏问题。整个空间多任务模型(ESMM)中的方法家庭杠杆用户操作的顺序模式,即$ Impression \ Rightarrow click \ rightArrow conversion $以解决数据稀疏问题。但是,他们仍然无法确保CVR估计的无偏见。在本文中,我们从理论上证明了ESMM遭受以下两个问题:(1)固有的估计偏置(IEB),其中ESMM的估计CVR本质上高于地面真相; (2)CTCVR估计的潜在独立性优先级(PIP),其中ESMM有可能忽略从点击转换为因果关系的风险。为此,我们设计了一种原则性的方法,称为整个空间反事实多任务建模(ESCM $^2 $),该方法采用了反事实风险模拟物作为ESMM的常规化合物,以同时解决IEB和PIP问题。在离线数据集和在线环境上进行的广泛实验表明,我们提出的ESCM $^2 $在很大程度上可以减轻固有的IEB和PIP问题,并比基线模型获得更好的性能。
Accurate estimation of post-click conversion rate is critical for building recommender systems, which has long been confronted with sample selection bias and data sparsity issues. Methods in the Entire Space Multi-task Model (ESMM) family leverage the sequential pattern of user actions, i.e. $impression\rightarrow click \rightarrow conversion$ to address data sparsity issue. However, they still fail to ensure the unbiasedness of CVR estimates. In this paper, we theoretically demonstrate that ESMM suffers from the following two problems: (1) Inherent Estimation Bias (IEB), where the estimated CVR of ESMM is inherently higher than the ground truth; (2) Potential Independence Priority (PIP) for CTCVR estimation, where there is a risk that the ESMM overlooks the causality from click to conversion. To this end, we devise a principled approach named Entire Space Counterfactual Multi-task Modelling (ESCM$^2$), which employs a counterfactual risk miminizer as a regularizer in ESMM to address both IEB and PIP issues simultaneously. Extensive experiments on offline datasets and online environments demonstrate that our proposed ESCM$^2$ can largely mitigate the inherent IEB and PIP issues and achieve better performance than baseline models.