论文标题

MMWave 6D无线电本地化,带有单个BS的快照观察

MmWave 6D Radio Localization with a Snapshot Observation from a Single BS

论文作者

Nazari, Mohammad A., Seco-Granados, Gonzalo, Johannisson, Pontus, Wymeersch, Henk

论文摘要

准确而普遍存在的本地化对于物流,导航,智能运输,监视,控制,以及对通信的利益至关重要。在5G和5G系统中利用毫米波(MMWAVE)信号可以在有限的基础架构中提供准确的定位。我们使用下链接多输入多输入正交频率多路复用(MIMO-OFDM)信号,考虑了非同步多ANTENNA用户设备(UE)的单个基站(BS)本地化问题,并将其扩展到3D位置和3D方向估计。通过Fisher信息分析,我们表明问题通常是可以识别的,只要除了视线(LOS)之外,至少还有一个多径成分,即使相应的发射点(IP)的位置是先验的未知。随后,我们提出了最大似然(ML)估计问题,以共同估计UE的3D位置和3D方向以及几个滋扰参数(UE时钟偏移量和与多径相对应的IPS的位置)。 ML问题是欧几里得和非欧几里得歧管的产物上的高维非凸优化问题。为了避免复杂的详尽搜索程序,我们提出了所有参数的几何初始估计值,该估计将问题减少到有限间隔的一维搜索。数值结果表明,使用ML估计来巩固所提出的临时估计的效率,该临时估计的差距(CRB)的差距得到了限制。

Accurate and ubiquitous localization is crucial for a variety of applications such as logistics, navigation, intelligent transport, monitoring, control, and also for the benefit of communications. Exploiting millimeter-wave (mmWave) signals in 5G and Beyond 5G systems can provide accurate localization with limited infrastructure. We consider the single base station (BS) localization problem and extend it to 3D position and 3D orientation estimation of an unsynchronized multi-antenna user equipment (UE), using downlink multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) signals. Through a Fisher information analysis, we show that the problem is often identifiable, provided that there is at least one multipath component in addition to the line-of-sight (LoS), even if the position of corresponding incidence point (IP) is a priori unknown. Subsequently, we pose a maximum likelihood (ML) estimation problem, to jointly estimate the 3D position and 3D orientation of the UE as well as several nuisance parameters (the UE clock offset and the positions of IPs corresponding to the multipath). The ML problem is a high-dimensional non-convex optimization problem over a product of Euclidean and non-Euclidean manifolds. To avoid complex exhaustive search procedures, we propose a geometric initial estimate of all parameters, which reduces the problem to a 1-dimensional search over a finite interval. Numerical results show the efficiency of the proposed ad-hoc estimation, whose gap to the Cramér-Rao bound (CRB) is tightened using the ML estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源