论文标题

KKL不等式和Rademacher 2型

The KKL inequality and Rademacher type 2

论文作者

Ivanisvili, Paata, Stone, Yonathan

论文摘要

我们表明,在Rademacher 2型的每个Banach空间中都有一个矢量价值的Kahn-Kalai-不平等。美元 \ | f - \ \ \ m马比布{ \,\ left(\ sum_ {j = 1}^n \ frac {\ | d_j f \ |^{2} _2} _2} { \ end {align*}对于所有$ f:\ { - { - 1,1 \}^{n} \ to x $和所有$ n \ geq 1 $,其中$ x $是标准空间,$ t_ {2}(x)$是相关类型2常数。

We show that a vector-valued Kahn--Kalai--Linial inequality holds in every Banach space of Rademacher type 2. We also show that for any nondecreasing function $h\geq 0$ with $0<\int_{1}^{\infty}\frac{h(t)}{t^{2}}\mathrm{dt}<\infty$ we have the inequality \begin{align*} \|f - \mathbb{E}f\|_2 \leq 12 \, T_{2}(X) \left(\int_{1}^{\infty}\frac{h(t)}{t^{2}} \mathrm{dt} \right)^{1/2} \, \left(\sum_{j=1}^n \frac{\|D_j f\|^{2}_2}{h\left( \log \frac{\|D_j f\|_2}{\|D_j f\|_1} \right)}\right)^{1/2} \end{align*} for all $f :\{-1,1\}^{n} \to X$ and all $n\geq 1$, where $X$ is a normed space and $T_{2}(X)$ is the associated type 2 constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源