论文标题
具有同型加密的可扩展隐私癌症类型预测
Scalable privacy-preserving cancer type prediction with homomorphic encryption
论文作者
论文摘要
机器学习(ML)减轻了高维数据分析的挑战,并改善了医疗保健等关键应用中的决策。如果发现癌症类型之间可区分的模式,则来自高维遗传突变数据的有效癌症类型可用于癌症诊断和治疗。同时,对高维数据的分析在计算上是昂贵的,并且通常外包到云服务。外包ML的隐私问题,尤其是在遗传学领域,激发了加密计算的使用,例如同态加密(HE)。但是,加密计算的限制开销阻止了其使用情况。在这项工作中,我们使用现实世界中的数据集探讨了保留癌症检测的挑战,该数据集由多种癌症类型的超过200万个遗传信息组成。由于数据本质上是高维的,因此我们探索了较小的ML模型以进行癌症预测,以便在隐私保留域中快速推断。我们开发了保留癌症推理的隐私解决方案的解决方案,该解决方案首先利用域突变的域知识来有效地编码遗传突变,然后使用统计检验进行特征选择。我们使用新型编码方案构建的逻辑回归模型,在曲线下达到0.98微平均水平,测试精度比类似研究高13%。我们通过分析模型使用的基因来详尽地测试了模型的预测能力。此外,我们提出了一种可以有效处理高维数据的快速矩阵乘法算法。实验结果表明,即使有40,000个功能,与标准矩阵乘法相比,我们提出的矩阵乘法算法也可以通过大约10倍加速了多个个体的同时推断,并且大约550x的推断大约550x。
Machine Learning (ML) alleviates the challenges of high-dimensional data analysis and improves decision making in critical applications like healthcare. Effective cancer type from high-dimensional genetic mutation data can be useful for cancer diagnosis and treatment, if the distinguishable patterns between cancer types are identified. At the same time, analysis of high-dimensional data is computationally expensive and is often outsourced to cloud services. Privacy concerns in outsourced ML, especially in the field of genetics, motivate the use of encrypted computation, like Homomorphic Encryption (HE). But restrictive overheads of encrypted computation deter its usage. In this work, we explore the challenges of privacy preserving cancer detection using a real-world dataset consisting of more than 2 million genetic information for several cancer types. Since the data is inherently high-dimensional, we explore smaller ML models for cancer prediction to enable fast inference in the privacy preserving domain. We develop a solution for privacy preserving cancer inference which first leverages the domain knowledge on somatic mutations to efficiently encode genetic mutations and then uses statistical tests for feature selection. Our logistic regression model, built using our novel encoding scheme, achieves 0.98 micro-average area under curve with 13% higher test accuracy than similar studies. We exhaustively test our model's predictive capabilities by analyzing the genes used by the model. Furthermore, we propose a fast matrix multiplication algorithm that can efficiently handle high-dimensional data. Experimental results show that, even with 40,000 features, our proposed matrix multiplication algorithm can speed up concurrent inference of multiple individuals by approximately 10x and inference of a single individual by approximately 550x, in comparison to standard matrix multiplication.