论文标题
部分可观测时空混沌系统的无模型预测
Loschmidt echo and Momentum Distribution in a Kitaev Spin Chain
论文作者
论文摘要
我们在一维自旋链中研究了Loschmidt Echo,在恒定和踢磁场中具有Kitaev型相互作用。 Loschmidt的初始状态回声具有不同的磁弹性激发,显示了较小链的长期复兴,并且具有较长链的短时复兴峰。临界点附近的系统显示了洛斯米特(Loschmidt)回声的奇特长期复兴峰,以相对较大的链条。在初始状态下的磁化的存在会影响洛斯米特回声复兴峰。动量分布函数表现出最大值的最大值,这与初始状态中存在的镁激发动量相关。具有系统尺寸的O(1/N)的概率最大值衰减。对于带有踢磁场的哈密顿量,Loschmidt Echo取决于踢球。在特殊的踢时期,Loschmidt Echo完全没有进化,无论系统尺寸如何。
We investigate the Loschmidt echo in a one-dimensional spin chain having Kitaev-type interaction in constant and kicked magnetic fields. The Loschmidt echo for the initial states having different magnon excitations shows long-time revivals for smaller chains and has short-time revival peaks for the longer chains. The system near the critical point shows peculiarly long-time revival peaks of the Loschmidt echo for relatively larger chains. The presence of a magnon in the initial state affects the Loschmidt echo revival peaks. The momentum distribution function exhibits maxima for a few momenta that are associated with the momentum of the magnon excitation present in the initial states. The probability maxima decay as O(1/N ) with the system size. For the Hamiltonian with kicked magnetic fields, the Loschmidt echo depends on the kick period. For a special kick period, the Loschmidt echo shows no evolution at all irrespective of the system size.