论文标题

超声剪切波弹性成像具有时空深度学习

Ultrasound Shear Wave Elasticity Imaging with Spatio-Temporal Deep Learning

论文作者

Neidhardt, Maximilian, Bengs, Marcel, Latus, Sarah, Gerlach, Stefan, Cyron, Christian J., Sprenger, Johanna, Schlaefer, Alexander

论文摘要

超声剪切波弹性成像是量化组织弹性特性的宝贵工具。通常,将剪切波速度得出并映射到弹性值,该值忽略了诸如传播剪切波或推动序列特性之类的信息。我们提供3D时空CNNS,以从超声数据中进行快速局部弹性估计。这种方法基于从小地方区域内的剪切波传播中检索弹性特性。通过从17.42 kPa到126.05 kPa的机器人获得了一个大型培训数据集,并具有各种推动位置。结果表明,我们的方法可以以平均绝对误差为5.01+-4.37 kPa来估计弹性特性。此外,我们估计与推动位置无关的局部弹性,甚至可以在推动区域内执行准确的估计。对于具有嵌入式夹杂物的幻影,与常规的剪切波法相比,MAE(7.50 kPa)降低了53.93%,背景为85.24%(1.64 kPa)。总体而言,我们的方法提供了对具有较小时空窗口尺寸的弹性特性的快速局部估计。

Ultrasound shear wave elasticity imaging is a valuable tool for quantifying the elastic properties of tissue. Typically, the shear wave velocity is derived and mapped to an elasticity value, which neglects information such as the shape of the propagating shear wave or push sequence characteristics. We present 3D spatio-temporal CNNs for fast local elasticity estimation from ultrasound data. This approach is based on retrieving elastic properties from shear wave propagation within small local regions. A large training data set is acquired with a robot from homogeneous gelatin phantoms ranging from 17.42 kPa to 126.05 kPa with various push locations. The results show that our approach can estimate elastic properties on a pixelwise basis with a mean absolute error of 5.01+-4.37 kPa. Furthermore, we estimate local elasticity independent of the push location and can even perform accurate estimates inside the push region. For phantoms with embedded inclusions, we report a 53.93% lower MAE (7.50 kPa) and on the background of 85.24% (1.64 kPa) compared to a conventional shear wave method. Overall, our method offers fast local estimations of elastic properties with small spatio-temporal window sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源