论文标题

建设性理论上的非常大的公理

Very large set axioms over constructive set theories

论文作者

Jeon, Hanul, Matthews, Richard

论文摘要

我们研究了根据建设性设置理论的基本嵌入方式定义的大型公理,重点是$ \ Mathsf {ikp} $和$ \ Mathsf {czf} $。大多数先前研究的大型公理,尤其是大型红衣主教的建设性类似物低于$ 0^\ sharp $,其证明理论强度比全二阶算术弱。另一方面,对于通过基本嵌入定义的情况,情况大不相同。我们表明,通过将$ j \ colon v \ $ j \ colon v \添加到$ \ mathsf {ikp} $中,以$Δ_0$ -formulas的形式嵌入$ j \ colon v \至m $,我们将用$ \ m athsf {Δ_0\ text { - } btee} btee} btee} btee} _m $,我们获得$ $ $ $ {我们还将看到Reinhardt集的一致性强度超过$ \ Mathsf {Zf+Wa} $的一致性。此外,我们将定义Super Reinhardt集和$ \ Mathsf {tr} $,这是$ V $的建设性类似物,完全是Reinhardt,并证明其证明理论的强度超过了$ \ Mathsf {Zf {Zf} $的$ \ Mathsf {Zf} $。

We investigate large set axioms defined in terms of elementary embeddings over constructive set theories, focusing on $\mathsf{IKP}$ and $\mathsf{CZF}$. Most previously studied large set axioms, notably the constructive analogues of large cardinals below $0^\sharp$, have proof-theoretic strength weaker than full Second-order Arithmetic. On the other hand, the situation is dramatically different for those defined via elementary embeddings. We show that by adding to $\mathsf{IKP}$ the basic properties of an elementary embedding $j\colon V\to M$ for $Δ_0$-formulas, which we will denote by $\mathsf{Δ_0\text{-}BTEE}_M$, we obtain the consistency of $\mathsf{ZFC}$ and more. We will also see that the consistency strength of a Reinhardt set exceeds that of $\mathsf{ZF+WA}$. Furthermore, we will define super Reinhardt sets and $\mathsf{TR}$, which is a constructive analogue of $V$ being totally Reinhardt, and prove that their proof-theoretic strength exceeds that of $\mathsf{ZF}$ with choiceless large cardinals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源