论文标题
具有无症状感染和缓解的流行隔室模型的非线性动力学
Nonlinear dynamics of an epidemic compartment model with asymptomatic infections and mitigation
论文作者
论文摘要
驱动电流{SARS-COV-2}大流行的很大一部分感染是无症状的。在这里,我们介绍并研究了一个简单的流行病模型,其中包含无症状和有症状感染的个体的单独隔室。确定模型爆发状况的线性动力学等于具有指数等待时间分布的更新理论方法。利用了整个非线性动力学的非平凡保护定律,我们通过隔离和测试在不存在缓解和测试的情况下对感染的峰值得出了分析界限。将边界与微分方程的数值解相提并论。
A significant proportion of the infections driving the current {SARS-CoV-2} pandemic are transmitted asymptomatically. Here we introduce and study a simple epidemic model with separate compartments comprising asymptomatic and symptomatic infected individuals. The linear dynamics determining the outbreak condition of the model is equivalent to a renewal theory approach with exponential waiting time distributions. Exploiting a nontrivial conservation law of the full nonlinear dynamics, we derive analytic bounds on the peak number of infections in the absence and presence of mitigation through isolation and testing. The bounds are compared to numerical solutions of the differential equations.