论文标题

部分Hölder规律性,用于具有熵结构的一类交叉扩散系统的解决方案

Partial Hölder Regularity for Solutions of a Class of Cross-Diffusion Systems with Entropy Structure

论文作者

Braukhoff, Marcel, Raithel, Claudia, Zamponi, Nicola

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this article we show a $C^{0,α}$-partial regularity result for solutions of a certain class of cross-diffusion systems with entropy structure. Under slightly more stringent conditions on the system, we are able to obtain a $C^{1,α}$-partial regularity result. Amongst others, our results yield the partial $C^{1,α}$-regularity of weak solutions of the Maxwell-Stefan system, as well as the partial $C^{1,α}$-regularity of bounded weak solutions of the Shigesada-Kawasaki-Teramoto model. The classical partial regularity theory for nonlinear parabolic systems as developed by Giaquinta and Struwe in the 80s proceeds by Campanato iteration which relies on energy methods. Our analysis here centers around the insight that, in the Campanato iteration strategy, we can replace the use of energy estimates by "entropy dissipation inequalities" and the use of the squared $L^2$-distance to measure the distance between functions by the use of the "relative entropy". In order for our strategy to work, it is necessary to regularize the entropy structure of the cross-diffusion system, thereby introducing a new technical tool, which we call the "glued entropy".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源