论文标题

在桥梁下找到巨魔:主题探测器的初步工作

Finding Trolls Under Bridges: Preliminary Work on a Motif Detector

论文作者

Yarlott, W. Victor H., Ochoa, Armando, Acharya, Anurag, Bobrow, Laurel, Estrada, Diego Castro, Gomez, Diana, Zheng, Joan, McDonald, David, Miller, Chris, Finlayson, Mark A.

论文摘要

图案是在民间传说中发现的独特的重复元素,它们在新闻,文学,新闻稿和宣传方面具有重要意义。图案简单地暗示着与文化相关的信息,它们的广泛用途表明,它们是文化知识的试金石的认知重要性,使他们的发现是朝着文化意识到的自然语言处理任务迈出的一步。到目前为止,民俗学家和对图案感兴趣的其他人只手动从叙事中提取了图案。我们提供了有关用于自动检测基序的系统开发的初步报告。我们简要描述了一个注释工作,以生成培训基序检测数据的数据,这正在进行中。我们详细描述了我们的过程中的体系结构,该体系结构旨在部分捕获人们如何确定候选人是否以漫画方式使用。此描述包括对搁置的隐喻检测器作为图案检测功能的测试,该功能在基序上达到了0.35的F1,并且在四个类别中,我们分配给主题候选者的四个类别的宏观平均F1为0.21。

Motifs are distinctive recurring elements found in folklore that have significance as communicative devices in news, literature, press releases, and propaganda. Motifs concisely imply a large constellation of culturally-relevant information, and their broad usage suggests their cognitive importance as touchstones of cultural knowledge, making their detection a worthy step toward culturally-aware natural language processing tasks. Until now, folklorists and others interested in motifs have only extracted motifs from narratives manually. We present a preliminary report on the development of a system for automatically detecting motifs. We briefly describe an annotation effort to produce data for training motif detection, which is on-going. We describe our in-progress architecture in detail, which aims to capture, in part, how people determine whether or not a motif candidate is being used in a motific way. This description includes a test of an off-the-shelf metaphor detector as a feature for motif detection, which achieves a F1 of 0.35 on motifs and a macro-average F1 of 0.21 across four categories which we assign to motif candidates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源