论文标题
Liuer Mihou:一个实用框架,用于生成和评估针对NIDS的灰色盒子对抗性攻击
Liuer Mihou: A Practical Framework for Generating and Evaluating Grey-box Adversarial Attacks against NIDS
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Due to its high expressiveness and speed, Deep Learning (DL) has become an increasingly popular choice as the detection algorithm for Network-based Intrusion Detection Systems (NIDSes). Unfortunately, DL algorithms are vulnerable to adversarial examples that inject imperceptible modifications to the input and cause the DL algorithm to misclassify the input. Existing adversarial attacks in the NIDS domain often manipulate the traffic features directly, which hold no practical significance because traffic features cannot be replayed in a real network. It remains a research challenge to generate practical and evasive adversarial attacks. This paper presents the Liuer Mihou attack that generates practical and replayable adversarial network packets that can bypass anomaly-based NIDS deployed in the Internet of Things (IoT) networks. The core idea behind Liuer Mihou is to exploit adversarial transferability and generate adversarial packets on a surrogate NIDS constrained by predefined mutation operations to ensure practicality. We objectively analyse the evasiveness of Liuer Mihou against four ML-based algorithms (LOF, OCSVM, RRCF, and SOM) and the state-of-the-art NIDS, Kitsune. From the results of our experiment, we gain valuable insights into necessary conditions on the adversarial transferability of anomaly detection algorithms. Going beyond a theoretical setting, we replay the adversarial attack in a real IoT testbed to examine the practicality of Liuer Mihou. Furthermore, we demonstrate that existing feature-level adversarial defence cannot defend against Liuer Mihou and constructively criticise the limitations of feature-level adversarial defences.