论文标题

基于ENO的高阶数据结合和约束阳性插值

ENO-Based High-Order Data-Bounded and Constrained Positivity-Preserving Interpolation

论文作者

Ouermi, Timbwaoga A. J., Kirby, Robert M., Berzins, Martin

论文摘要

许多基于张量 - 产品网格结构(例如数值天气预测(NWP)和燃烧模拟)的关键科学计算应用需要保存财产的插值。本质上是非振荡(ENO)插值是此类插值方案的经典例子。在上述应用领域,财产保存通常表现为数据界或积极性保存的要求。例如,在NWP中,可能必须在将动力学计算为计算物理学的网格的网格之间插值。插值密度或其他关键的物理量,而没有考虑财产保存的情况,可能会导致无物质的负值,并导致物理数据的不准确表示和/或解释。当在低阶数值模拟方法的上下文中使用时,属性保护插值非常简单。但是,高阶保留属性插值是非平凡的,尤其是在插值点未静止的情况下。在本文中,我们证明了可以构建高阶插值方法,以确保数据界面或约束阳性保存。该算法的一个新特征是限制了保留阳性的插入剂。也就是说,超出数据值的数量可能严格控制。我们开发的算法含有理论估计值,这些估计为数据界限和阳性保存的约束提供了足够的条件。我们证明了我们的算法在1D和2D数值示例的集合中的应用,并表明在所有情况下都尊重财产保存。

A number of key scientific computing applications that are based upon tensor-product grid constructions, such as numerical weather prediction (NWP) and combustion simulations, require property-preserving interpolation. Essentially non-oscillatory (ENO) interpolation is a classic example of such interpolation schemes. In the aforementioned application areas, property preservation often manifests itself as a requirement for either data boundedness or positivity preservation. For example, in NWP, one may have to interpolate between the grid on which the dynamics is calculated to a grid on which the physics is calculated (and back). Interpolating density or other key physical quantities without accounting for property preservation may lead to negative values that are nonphysical and result in inaccurate representations and/or interpretations of the physical data. Property-preserving interpolation is straightforward when used in the context of low-order numerical simulation methods. High-order property-preserving interpolation is, however, nontrivial, especially in the case where the interpolation points are not equispaced. In this paper, we demonstrate that it is possible to construct high-order interpolation methods that ensure either data boundedness or constrained positivity preservation. A novel feature of the algorithm is that the positivity-preserving interpolant is constrained; that is, the amount by which it exceeds the data values may be strictly controlled. The algorithm we have developed comes with theoretical estimates that provide sufficient conditions for data boundedness and constrained positivity preservation. We demonstrate the application of our algorithm on a collection of 1D and 2D numerical examples, and show that in all cases property preservation is respected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源