论文标题

部分可观测时空混沌系统的无模型预测

ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How do dense core properties affect the multiplicity of protostars?

论文作者

Luo, Qiuyi, Liu, Tie, Tatematsu, Kenichi, Liu, ShengYuan, Li, Pak Shing, di Francesco, James, Johnstone, Doug, Goldsmith, Paul F., Dutta, Somnath, Hirano, Naomi, Lee, ChinFei, Li, Di, Kim, KeeTae, Lee, Chang Won, Lee, JeongEun, Liu, Xunchuan, Juvela, Mika, He, Jinhua, Qin, ShengLi, Liu, HongLi, Eden, David, Kwon, Woojin, Sahu, Dipen, Li, Shanghuo, Xu, FengWei, Zhang, Siju, Hsu, ShihYing, Bronfman, Leonardo, Sanhueza, Patricio, Pelkonen, VeliMatti, Zhou, Jianwen, Liu, Rong, Gu, Qilao, Wu, Yuefang, Mai, Xiaofeng, Falgarone, Edith, Shen, ZhiQiang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

During the transition phase from a prestellar to a protostellar cloud core, one or several protostars can form within a single gas core. The detailed physical processes of this transition, however, still remain unclear. We present 1.3 mm dust continuum and molecular line observations with the Atacama Large Millimeter/submillimeter Array (ALMA) toward 43 protostellar cores in the Orion Molecular Cloud Complex ($λ$ Orionis, Orion B, and Orion A) with an angular resolution of $\sim$ 0.35" ($\sim$ 140 au). In total, we detect 13 binary/multiple systems. We derive an overall multiplicity frequency (MF) of 28$\%$ $\pm$ 4$\%$ and a companion star fraction (CSF) of 51$\%$ $\pm$ 6$\%$, over a separation range of 300-8900 au. The median separation of companions is about 2100 au. The occurrence of stellar multiplicity may depend on the physical characteristics of the dense cores. Notably, those containing binary/multiple systems tend to show higher gas density and Mach number than cores forming single stars. The integral-shaped filament (ISF) of Orion A giant molecular cloud (GMC), which has the highest gas density and hosts high-mass star formation in its central region (the Orion Nebula cluster), shows the highest MF and CSF among the Orion GMCs. In contrast, the $λ$ Orionis Giant Molecular Cloud (GMC) has a lower MF and CSF than the Orion B and Orion A GMCs, indicating that feedback from HII regions may suppress the formation of multiple systems. We also find that the protostars comprising a binary/multiple system are usually at different evolutionary stages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源