论文标题
部分可观测时空混沌系统的无模型预测
ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How do dense core properties affect the multiplicity of protostars?
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
During the transition phase from a prestellar to a protostellar cloud core, one or several protostars can form within a single gas core. The detailed physical processes of this transition, however, still remain unclear. We present 1.3 mm dust continuum and molecular line observations with the Atacama Large Millimeter/submillimeter Array (ALMA) toward 43 protostellar cores in the Orion Molecular Cloud Complex ($λ$ Orionis, Orion B, and Orion A) with an angular resolution of $\sim$ 0.35" ($\sim$ 140 au). In total, we detect 13 binary/multiple systems. We derive an overall multiplicity frequency (MF) of 28$\%$ $\pm$ 4$\%$ and a companion star fraction (CSF) of 51$\%$ $\pm$ 6$\%$, over a separation range of 300-8900 au. The median separation of companions is about 2100 au. The occurrence of stellar multiplicity may depend on the physical characteristics of the dense cores. Notably, those containing binary/multiple systems tend to show higher gas density and Mach number than cores forming single stars. The integral-shaped filament (ISF) of Orion A giant molecular cloud (GMC), which has the highest gas density and hosts high-mass star formation in its central region (the Orion Nebula cluster), shows the highest MF and CSF among the Orion GMCs. In contrast, the $λ$ Orionis Giant Molecular Cloud (GMC) has a lower MF and CSF than the Orion B and Orion A GMCs, indicating that feedback from HII regions may suppress the formation of multiple systems. We also find that the protostars comprising a binary/multiple system are usually at different evolutionary stages.