论文标题

太阳大气中的非理想的有限拉莫尔半径效应

The non-ideal finite Larmor radius effect in the solar atmosphere

论文作者

Pandey, B. P., Wardle, Mark

论文摘要

部分离子化的太阳气氛的动力学由主要中性氢原子和带电离子之间的频繁碰撞和电荷交换控制。在碰撞或电荷交换频率的下方或阶段的信号频率下,磁应力是{\ sefe}的同时被带电和中性粒子的感觉。离子的产生中性质量负载导致有效离子 - 循环频率的重新缩放成为霍尔频率,并且所得的有效Larmor半径变成几公里的阶。因此,有限拉莫尔半径(FLR)效应表现为离子和中性压力应力张量在宏观尺度上运行。尽管平行和垂直(相对于磁场)粘性动量传输与光球 - 偶联体中磁场的欧姆和大厅扩散竞争,但在卵球杆和电球之间的过渡区域中,陀螺仪的效应才与抗极管扩散竞争,仅在色球和电球之间的过渡区域中很重要。陀螺仪效应中的波传播主要取决于等离子体$β$(热和磁能的比例)。丰富的自由能使陀螺波动不稳定,而起步状况与霍尔不稳定性恰好相反。但是,最大增长率与霍尔不稳定性相同。对于流梯度$ \ sim 0.1 \,\ mbox {s}^{ - 1} $不稳定性增长时间为一分钟。因此,过渡区域可能会受到这种快速增长的卵形不稳定的影响。

The dynamics of the partially ionized solar atmosphere is controlled by the frequent collision and charge exchange between the predominant neutral Hydrogen atoms and charged ions. At signal frequencies below or of the order of either of the collision or charge exchange frequencies the magnetic stress is {\it felt} by both the charged and neutral particles simultaneously. The resulting neutral-mass loading of the ions leads to the rescaling of the effective ion-cyclotron frequency-it becomes the Hall frequency, and the resultant effective Larmor radius becomes of the order of few kms. Thus the finite Larmor radius (FLR) effect which manifests as the ion and neutral pressure stress tensors operates over macroscopic scales. Whereas parallel and perpendicular (with respect to the magnetic field) viscous momentum transport competes with the Ohm and Hall diffusion of the magnetic field in the photosphere-chromosphre, the gyroviscous effect becomes important only in the transition region between the chromosphere and corona, where it competes with the ambipolar diffusion. The wave propagation in the gyroviscous effect dominated medium depends on the plasma $β$ (a ratio of the thermal and magnetic energies). The abundance of free energy makes gyro waves unstable with the onset condition exactly opposite of the Hall instability. However, the maximum growth rate is identical to the Hall instability. For a flow gradient $\sim 0.1 \,\mbox{s}^{-1}$ the instability growth time is one minute. Thus, the transition region may become subject to this fast growing, gyroviscous instability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源