论文标题

使用监视信息对嘈杂的空中交易记录的呼叫签名识别和理解

Call-sign recognition and understanding for noisy air-traffic transcripts using surveillance information

论文作者

Blatt, Alexander, Kocour, Martin, Veselý, Karel, Szöke, Igor, Klakow, Dietrich

论文摘要

空中交通管制(ATC)依赖于飞行员和空运控制器(ATCO)之间的语音进行通信。作为每次飞行的唯一标识符,呼叫符号用于解决ATCO的特定飞行员。从通信中提取呼叫 - 符号是一个挑战,因为ATC语音通道和接收器引入的额外噪声。语音中的低信噪比(SNR)导致高单词错误率(WER)转录本。我们提出了一个新的呼叫识别和理解(CRU)系统,以解决此问题。对识别器进行了培训,可以识别嘈杂的ATC成绩单中的呼叫签名,并将其转换为标准的国际民航组织(ICAO)格式。通过合并监视信息,我们可以将呼叫符号准确性(CSA)乘以四倍。引入的数据增强功能在高WER成绩单上增加了额外的性能,并允许模型适应未见空间。

Air traffic control (ATC) relies on communication via speech between pilot and air-traffic controller (ATCO). The call-sign, as unique identifier for each flight, is used to address a specific pilot by the ATCO. Extracting the call-sign from the communication is a challenge because of the noisy ATC voice channel and the additional noise introduced by the receiver. A low signal-to-noise ratio (SNR) in the speech leads to high word error rate (WER) transcripts. We propose a new call-sign recognition and understanding (CRU) system that addresses this issue. The recognizer is trained to identify call-signs in noisy ATC transcripts and convert them into the standard International Civil Aviation Organization (ICAO) format. By incorporating surveillance information, we can multiply the call-sign accuracy (CSA) up to a factor of four. The introduced data augmentation adds additional performance on high WER transcripts and allows the adaptation of the model to unseen airspaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源