论文标题

部分可观测时空混沌系统的无模型预测

LyMAS reloaded: improving the predictions of the large-scale Lyman-α forest statistics from dark matter density and velocity fields

论文作者

Peirani, S., Prunet, S., Colombi, S., Pichon, C., Weinberg, D. H., Laigle, C., Lavaux, G., Dubois, Y., Devriendt, J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present LyMAS2, an improved version of the "Lyman-α Mass Association Scheme" aiming at predicting the large-scale 3d clustering statistics of the Lyman-α forest (Ly-α) from moderate resolution simulations of the dark matter (DM) distribution, with prior calibrations from high resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived from the Horizon-AGN suite simulations, (100 Mpc/h)^3 comoving volume, using Wiener filtering, combining information from dark matter density and velocity fields (i.e. velocity dispersion, vorticity, line of sight 1d-divergence and 3d-divergence). All new predictions have been done at z=2.5 in redshift-space, while considering the spectral resolution of the SDSS-III BOSS Survey and different dark matter smoothing (0.3, 0.5 and 1.0 Mpc/h comoving). We have tried different combinations of dark matter fields and found that LyMAS2, applied to the Horizon-noAGN dark matter fields, significantly improves the predictions of the Ly-α 3d clustering statistics, especially when the DM overdensity is associated with the velocity dispersion or the vorticity fields. Compared to the hydrodynamical simulation trends, the 2-point correlation functions of pseudo-spectra generated with LyMAS2 can be recovered with relative differences of ~5% even for high angles, the flux 1d power spectrum (along the light of sight) with ~2% and the flux 1d probability distribution function exactly. Finally, we have produced several large mock BOSS spectra (1.0 and 1.5 Gpc/h) expected to lead to much more reliable and accurate theoretical predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源