论文标题

自然还原$(α_1,α_2)$度量

Naturally reductive $(α_1, α_2)$ metrics

论文作者

Tan, Ju, Xu, Ming

论文摘要

让$ f $为均质$(α_1,α_2)$公制,在还原均匀的歧管$ g/h $上。首先,我们将$ f $的自然降低性描述为自然还原性的riemannian指标之间的本地$ f $ - 产品。其次,我们证明了其平均Berwald曲率和S形象的$ f $的几个属性之间的等效性。最后,当$ f $自然还原时,我们发现一个明确的标志曲率公式。

Let $F$ be a homogeneous $(α_1,α_2)$ metric on the reductive homogeneous manifold $G/H$. Firstly, we characterize the natural reductiveness of $F$ as a local $f$-product between naturally reductive Riemannian metrics. Secondly, we prove the equivalence among several properties of $F$ for its mean Berwald curvature and S-curvature. Finally, we find an explicit flag curvature formula when $F$ is naturally reductive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源