论文标题
自然还原$(α_1,α_2)$度量
Naturally reductive $(α_1, α_2)$ metrics
论文作者
论文摘要
让$ f $为均质$(α_1,α_2)$公制,在还原均匀的歧管$ g/h $上。首先,我们将$ f $的自然降低性描述为自然还原性的riemannian指标之间的本地$ f $ - 产品。其次,我们证明了其平均Berwald曲率和S形象的$ f $的几个属性之间的等效性。最后,当$ f $自然还原时,我们发现一个明确的标志曲率公式。
Let $F$ be a homogeneous $(α_1,α_2)$ metric on the reductive homogeneous manifold $G/H$. Firstly, we characterize the natural reductiveness of $F$ as a local $f$-product between naturally reductive Riemannian metrics. Secondly, we prove the equivalence among several properties of $F$ for its mean Berwald curvature and S-curvature. Finally, we find an explicit flag curvature formula when $F$ is naturally reductive.