论文标题
时间逆转和$ \ boldsymbol {cp} $ calabi-yau压缩中的不变性
Time reversal and $\boldsymbol{CP}$ invariance in Calabi-Yau compactifications
论文作者
论文摘要
我们重新审视时间逆转的问题和$ CP $ CALABI-YAU压缩的不变性。我们表明,量子校正对预势率尊重时间逆转不变性。特别是,通过需要相关的单骨转换的完整性来决定存在的领域独立$θ$角可以准确地将量化值与时间反向不变性兼容。此外,单型对称性会扩大模量空间的区域,在该空间上,时间逆转不会自发折断。我们为多参数模型定义了$ cp $转换的动作,并认为在定义的模量空间的切片上,$ cp $是对理论的微不足道的对称性。对于位于此切片中的超对称性真空吸尘器,我们得出了紧凑型歧管的第三个共同体的条件,该条件确定是否存在将模量稳定在此类点上的$ cp $ cp $。在单参数模型的情况下,总是满足条件。
We revisit the question of time reversal and $CP$ invariance in Calabi-Yau compactifications. We show that time reversal invariance is respected by quantum corrections to the prepotential. In particular, field independent $θ$ angles whose presence is dictated by requiring integrality of relevant monodromy transformations can take precisely the quantized values compatible with time reversal invariance. Furthermore, monodromy symmetry enlarges the region on moduli space on which time reversal is not spontaneously broken. We define the action of the $CP$ transformation for multi-parameter models and argue that on the slice of moduli space where it is defined, $CP$ is trivially a symmetry of the theory. For supersymmetric vacua that lie in this slice, we derive a condition on the third cohomology of the compactification manifold which determines whether $CP$ preserving fluxes exist that stabilize the moduli to such points. In the case of one-parameter models, the condition is always satisfied.