论文标题
离子晶体的荧光量热法
Fluorescence calorimetry of an ion crystal
论文作者
论文摘要
受到冷离子晶体中入侵离子离子的挑战,我们研究了发射荧光光的量热法。在连续的多普勒冷却下,离子晶体达到具有固定水平荧光强度的温度平衡,并且晶体的运动能量的任何变化都会导致这种强度的改变。我们从理论上确定了离子晶体的荧光速率随温度的函数,假设激光沿着两级电子过渡散射,该跃迁通过光的机械效应将其伴随到晶体的振动中。我们分析了通过传入的入侵者离子碰撞散发的热量如何改变散射率。我们认为,通过传入的$^{229} $ th $^{10+} $ ion的能量变化可以在100美元$ $ s之内明确检测到10 $^{3} $ ion Crystal。该方法可实现应用程序的应用,包括捕获和光谱的or同位素的带电状态以及对高电荷离子的研究。
Motivated by the challenge of identifying intruder ions in a cold ion crystal, we investigate calorimetry from emitted fluorescence light. Under continuous Doppler cooling, the ion crystal reaches a temperature equilibrium with a fixed level of fluorescence intensity and any change in the motional energy of the crystal results in a modification of this intensity. We theoretically determine the fluorescence rate of an ion crystal as a function of the temperature, assuming that laser light is scattered along a two-level electronic transition, which couples to the crystal's vibrations via the mechanical effects of light. We analyze how the heat dissipated by collisions of an incoming intruder ion alters the scattering rate. We argue that an energy change by an incoming $^{229}$Th$^{10+}$ ion can be unambiguously detected within 100 $μ$s via illuminating a fraction of a 10$^{3}$ ion crystal. This method enables applications including capture and spectroscopy of charged states of thorium isotopes and investigation of highly charged ions.