论文标题

曲线缩短革命表面上的旋转孤子

Rotational Solitons for the Curve Shortening Flow on Revolution Surfaces

论文作者

Reis, Hiuri dos, Leandro, Benedito, Novais, Rafael

论文摘要

我们为$ \ mathbb {r}^3 $的旋转曲线缩短流(CSF)介绍了曲线缩短流(CSF)的特征。此外,我们通过表明每个开放曲线的两端对平行的大地测量渐近地描述了这种曲线的行为。

We present a characterization for the rotational soliton for the curve shortening flow (CSF) on the revolution surfaces of $\mathbb{R}^3$. Furthermore, we describe the behavior of such curves by showing that the two ends of each open curve are asymptotic to a parallel geodesic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源