论文标题

流行病学建模的可视化:挑战,解决方案,反思和建议

Visualization for Epidemiological Modelling: Challenges, Solutions, Reflections & Recommendations

论文作者

Dykes, Jason, Abdul-Rahman, Alfie, Archambault, Daniel, Bach, Benjamin, Borgo, Rita, Chen, Min, Enright, Jessica, Fang, Hui, Firat, Elif E., Freeman, Euan, Gonen, Tuna, Harris, Claire, Jianu, Radu, John, Nigel W., Khan, Saiful, Lahiff, Andrew, Laramee, Robert S., Matthews, Louise, Mohr, Sibylle, Nguyen, Phong H., Rahat, Alma A. M., Reeve, Richard, Ritsos, Panagiotis D., Roberts, Jonathan C., Slingsby, Aidan, Swallow, Ben, Torsney-Weir, Thomas, Turkay, Cagatay, Turner, Robert, Vidal, Franck P., Wang, Qiru, Wood, Jo, Xu, Kai

论文摘要

我们通过记录和反思知识结构(从现有的可视化研究和实践中采用的一系列思想,方法和方法)来报告流行病学模板和可视化研究人员之间正在进行的合作 - 部署和开发了一系列的思想,方法和方法,以支持COVID-19的模型。对这些努力的结构性独立评论是通过迭代反思来发展的:在这种情况下可视化的有效性和价值的证据;研究社区可能关注的开放问题;这种类型的未来活动的指导;和建议,以维护成就,促进,提高,确保并为将来的这种合作做准备。在描述和比较在前所未有的条件下进行的一系列相关项目时,我们的希望是,这份独特的报告及其丰富的互动补充材料将指导科学界在其观察,分析和数据建模以及分散发现中采用可视化。同样,我们希望鼓励可视化社区与有影响力的科学互动,以应对其新兴数据挑战。如果我们成功,这种活动的展示可能会刺激具有互补专业知识的社区之间互惠互利的参与,以解决流行病学及其他方面的重要问题。 https://ramp-vis.github.io/rampvis-philtransa-supplement/

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs -- a series of ideas, approaches and methods taken from existing visualization research and practice -- deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type; and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源