论文标题

MOS2/氧化物和石墨烯/氧化物界面的非平衡声子热电阻

Non-equilibrium Phonon Thermal Resistance at MoS2/Oxide and Graphene/Oxide Interfaces

论文作者

Zheng, Weidong, McClellan, Connor J., Pop, Eric, Koh, Yee Kan

论文摘要

对二维(2D)材料的热边界电阻(R)的准确测量和物理理解对于有效的2D电子和光子学的热管理是必不可少的。在先前的研究中,假定来自2D物质设备的热量耗散是通过跨界面传输的声子传输来控制的。在这项研究中,我们发现,除了声子传输外,2D材料中非平衡声子之间的热电阻在内部自热时(光学或电气上都可以自热时)也可能起关键作用。我们通过差分时间域热素侵袭性(TDTR)准确地测量了三种氧化物(SIO2,HFO2,AL2O3)的氧化物/MOS2/MOS2/氧化物/石墨烯/氧化物界面。我们在这些界面上的R的测量值比以前报道的RAMAN温度计测量的相似界面的R比以前报道的R低2到4倍。使用一个简单的模型,我们表明观察到的差异可以通过在拉曼测量过程中存在的非平衡声子之间的额外的内部热电阻(RINT)来解释。随后,我们估计对于MOS2和石墨烯,RINT分别约为31和22 m2 K/gw。该值与2D材料界面的有限声子传输引起的热电阻相媲美,因此在2D材料设备的设计中不能忽略。此外,非平衡声子也与声子传输相比导致温度依赖性不同。因此,我们的工作为2D物质设备中对热量耗散的物理理解提供了重要的见解。

Accurate measurements and physical understanding of thermal boundary resistance (R) of two-dimensional (2D) materials are imperative for effective thermal management of 2D electronics and photonics. In previous studies, heat dissipation from 2D material devices was presumed to be dominated by phonon transport across the interfaces. In this study, we find that in addition to phonon transport, thermal resistance between non-equilibrium phonons in the 2D materials could play a critical role too when the 2D material devices are internally self-heated, either optically or electrically. We accurately measure R of oxide/MoS2/oxide and oxide/graphene/oxide interfaces for three oxides (SiO2, HfO2, Al2O3) by differential time-domain thermoreflectance (TDTR). Our measurements of R across these interfaces with external heating are 2-to-4 times lower than previously reported R of the similar interfaces measured by Raman thermometry with internal self-heating. Using a simple model, we show that the observed discrepancy can be explained by an additional internal thermal resistance (Rint) between non-equilibrium phonons present during Raman measurements. We subsequently estimate that for MoS2 and graphene, Rint is about 31 and 22 m2 K/GW, respectively. The values are comparable to the thermal resistance due to finite phonon transmission across interfaces of 2D materials and thus cannot be ignored in the design of 2D material devices. Moreover, the non-equilibrium phonons also lead to a different temperature dependence than that by phonon transport. As such, our work provides important insights into physical understanding of heat dissipation in 2D material devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源