论文标题

软机器人抓手的视觉压力估计和控制

Visual Pressure Estimation and Control for Soft Robotic Grippers

论文作者

Grady, Patrick, Collins, Jeremy A., Brahmbhatt, Samarth, Twigg, Christopher D., Tang, Chengcheng, Hays, James, Kemp, Charles C.

论文摘要

软机器人抓手有助于富含接触的操作,包括对各种物体的强大抓握。然而,软抓手的有益依从性也会导致重大变形,这可能会使精确的操纵具有挑战性。我们提出了视觉压力估计与控制(VPEC),该方法使用外部摄像头的RGB图像施加了软抓地力的压力。当气动抓地力和肌腱脱手的抓地力与平坦的表面接触时,我们为视觉压力推断提供了结果。我们还表明,VPEC可以通过对推断压力图像的闭环控制进行精确操作。在我们的评估中,移动操纵器(来自Hello Robot的RESTER RE1)使用Visual Servoing在所需的压力下进行接触;遵循空间压力轨迹;并掌握小型低调的物体,包括microSD卡,一分钱和药丸。总体而言,我们的结果表明,对施加压力的视觉估计可以使软抓手能够执行精确操作。

Soft robotic grippers facilitate contact-rich manipulation, including robust grasping of varied objects. Yet the beneficial compliance of a soft gripper also results in significant deformation that can make precision manipulation challenging. We present visual pressure estimation & control (VPEC), a method that infers pressure applied by a soft gripper using an RGB image from an external camera. We provide results for visual pressure inference when a pneumatic gripper and a tendon-actuated gripper make contact with a flat surface. We also show that VPEC enables precision manipulation via closed-loop control of inferred pressure images. In our evaluation, a mobile manipulator (Stretch RE1 from Hello Robot) uses visual servoing to make contact at a desired pressure; follow a spatial pressure trajectory; and grasp small low-profile objects, including a microSD card, a penny, and a pill. Overall, our results show that visual estimates of applied pressure can enable a soft gripper to perform precision manipulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源